
AD-AO86 830 ILLINOIS UNIV AT CHICAGO CIRCLE 
DEPT OF MATHEMATICS 

F/G 12/2

STUDY OF OPTIMALITY CRITERIA IN DESIGN OF EXPERIMENTS.(U)
JUN 80 A HEDAYAT AFOSR-793050

ULNCLASS IFIED AFOSR-TR-80-0514 N L

* flfl lflfl END

monsoo 8 TIO0



LEVEL
STUDY OF OPTIMALITY

CRITERIA IN DESIGN OF EXPERIMENTS*

by

A. Hedayat
Department of Mathematics

University of Illinois, Chicago

June 3, 1980

'DT1C
SELECTJUL 1 7 980D

*Invited paper presented at International hqymosum_
Sttste .An Eeat 5:p held during May 5-8, 1980
at Carleton University, Ottawa, Cananda.

AIR FORCE OFFIC'E OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TTIA-S-YT:TAT, TO DDC
This tecb> i' b:ti-- een reviewed and is
approvcd *(, 11t IAX AYR~ 19k)-2 (7b).

A. D. BLOSE
rechtiicai information officer

Research supported by Grant AFOSR 79-30500.

- - - - --. ~.-7



UNL;LA.SSb~ iIA)
SECURITY CLASSIFICATION O F TIS PAGE (When flats tntered), E DI S R C I N

p w"-TUDY OF PTIMALITY CRITERIA IN DESIGN OFmA

C A./Hedayat AOR7 61

Chiago I 608061102F 2304 5

11. CONTROLINGOFIENMA ADDRESS1.SCITCLS.oftsreot

14. ONITRINGAGENCYJ&MAME ADE&I different from. Controlling Office) ISNSCASIFIEDS.(o hi epr

15a. DECL ASSI FI CATION/ DOWNGRADING
SCHEDULE

16.. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I7. DISTRIBUTION STATEMENT (of the abstract entered it) Block 20. it different from, Report)

IS. SUPPLEMENTARY NOTES

INTERNATIONAL SYMPOSIUM ON STATISTICS AND RELATED TOPICS, Carleton University,
aOttawa, Canada, May 5-8, 1980

19. KEY WORDS (Continue on reverse side if neces sary end identify by block number)

Design, optimality criterion, A-optimality, D-optimality, L-optimality, E-
optimality, Universal ootimality, &-criterion and its generalization, S-optimali y,

p
(M,S)-optimality, Schur optimality.

20. VSTRACT (Continue on reerse side If necessary and Identity by block number)

._JA this paper ye have rigorously studied various optimality criteria currently

adopted by design specialists in choosing a best design for performing an ex-
periment. These optimality criteria includes: G-optimalit " D-optimality, L-
optimality, E-optimality, S-optimality, (M,S)-optimnal ity,, a picriteria, universal
optimality, type 1 and 2 criteria and Schur optimality. -- ,

AN 473 EfrO IogsUSET UNCLASSIFIED
*~O79~7~ SECURITY CLASSIFICATION OF THIS PAGE (Whoz a ®rter.)



STUDY OF OPTIMALITY

CRITERIA IN DESIGN OF EXPERIMENTS

by
A. Hedayat

Department of Mathematics*1 University of Illinois, Chicago

In this paper we have rigorously studied various optim-

ality criteria currently adopted by design specialists in

choosing a best design for performing an experiment. These

optimality criteria includes: G-optimality, D-optimality,

L-optimality, E-optimality, S-optimality, (M,S)-optimality

§P-criteria, Universal optimality, type 1 and 2 criteria

and Schur optimality.

Re h u rAoslo t.. 

Research ~~ ~ ~ ~ ~ is Availte byGan FOR79350.---'---- r



Study of Optimality

Criteria in Design of Experiments

by

A. Hedayat
Department of Mathematics

University of Illinois, Chicago

1. Preliminarv.

We perform experiments mainly to estimate or test hypo-

theses about some specified unknown parameters of a given

model efficiently. Different considerations lead us to

different criteria for the choice of the "best" design. Al-

though Definition 2.1 is a response function criterion, most

criteria in design theory are directly related to parameter

estimation. Hence the information matrices play an import-

ant role and thus by Caratheodory theorem we can limit our

search to discrete designs which are supported on sets con-

sisting of finite number of points.

To see how the optimality criteria in design theory a-

rose, we first give an example of the very basic motivation:

Let d be a design and let Y be the vector of observations

obtained under d. Assume

E(X) = Cov(Y) 2 (1.1)

where X is an nXl vector of observations, X is an nxk

matrix with Known entries specified by d, f is a kxl vec-

tor of unknown constants, and I denotes the identity matrix

of order n. In many cases we are only interested in the



subvector of . With no loss of generality we can

write D'--(-' e '), where is a vX1 vector,

1 S v * k. According to the partition a' - (el' i 82') the

Model (1.1) can be written as

E(Y) = (X1  x2) ) Cov(Y)= n21. (1.1)'

02

The information matrix of ei under d and the Model

(1.1)' is X1 IXl-X 1'X2 (X2 'X2 )-X2 'X1. We shall denote this

by Md . Note that Md = XeX when v = ,i.e. = . Now

we consider four cases:

(i) Mggtiae Agbhomoa tz 9_S 1:

Assume X'X is nonsingular, and suppose we want to

estimate each of the individual parameters. By Gauss-Markov

Theorem, the best linear unbiased estimator (b.l.u.e.) of

is given by:

- (XX)-'x'y (1.2)

with

Cov(O) = a 2 (X'X) - 1 . (1.)

Let x be the i-th column of X and cj be the

J-th column of X(X'X)- , then from (1.2) and (1.3) it follows

that

= c, Y (1.4)

with



3.
A 2

Var(Oi) e 2 (cjcj). (1.5)

Since (X$X)-I(x'x) = Ik, we have cjxj = bij, where 1

is the Kronecker delta. Applying the Schwarz inequality,

we obtain

(xlxi)(cjci ) >. = 1. (1.6)

hence

Var(ti) a e2 (1.7)

Usually, the experimenter has some amount of freedom

in the choice of the k vectors xi* If possible, we would

like to select a design which estimates each of the parameters

with minimum variance. Observe that the equality in (1.6)

holds if and only if ci = cxi for a constant c, which im-

plies that X'X is a diagonal matrix. Hence, theoretically

speaKing, the "best design" is when X'X is a diagonal matrix

with diagonal entries as large as possible. (e.g., if xi =

0,1, or -1; then xjxi _ n, the best design is the one for

which X'X = nlk.) But such a design does not always exist,

see Hedayat and Wallis (1979). When such designs do not exist,

the question arises to how a best design should be defined. A

reasonable approach is to minimize the average variance of each'

of the estimated parameters or to minimize the generalized

variance, etc.

Suppose we want to estimate linear functions of A in



1$.

the form q A1 . The b.l.u.e. of qjl Is q i

with

Var(q{l) = 2 qMd-ql ,  (1.8)

where l = Md Qd' (1.9)

and Qd = [XI'-XI'X2(X2'X2 x.1 Y, (1.10)

while M; is any generalized inverse of Md.

In choosing a design for estimating ql'l there are

many criteria. One of them is based on the following in-

equality

Wmin q , max'(. l

where Umax and UImin are the maximum and the minimum (non-

zero) eigenvalues of Md, respectively. This inequality gives

a bound for the variance of q1

1 min qjql 2 < Var(qitl) _< pmax q'qla2  (1.12)

(iii) hypotetheses:

Suppose in addition Y is multivariate normal and we

want t6 test 61 = 02 .... ev = 0 (v _ k). (Assume Md is

nonsingular). Then the usual F test has a power function

depending monotonically (increasing) on a parameter X where

-2

x = b 1 Ma1I (.(1)
and thus by (1.11) and (1.13)
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where pmax and Vmin are the maximum and the minimum eigen-

values of Md -

(iv) 2.9 construct, cfidj region

Again assume Y is multivariate normal and

Md  is nonsingular. A 1-a joint confidence region for

!l is a solid ellipsoid:

22 2
(-)'M (-) (v), if a is known, (1.15)

where (v) is the i-a percentile of the 2 distribution

with v degrees of freedom. Or

(l-<l)'Md (ivS F(vn-r), if 02 is unknown, (1.16)

where F (v,n-r) is the 1-a percentile of the F distribu-

tion with v and n-r degrees of freedom, and

S2 = Y'i[I-X(X'X)-X'X]Y/(n-r) is an unbiased estimator of

o2 (assume rank (X'X) = r).

We observe that:,

(a) The volume (expected volume, if c; is unknown) of the

above ellipsoid is proportional to the square root of 
det M;l

(b) The semi-exes (expected semi-axes, if a is unknown) of

the above ellipsoid is proportional to the square roots of the

eigenvalues of Md'.

In Section 2 we shall study some well-known optimality

criteria. Section 3-7 will be some generalization of those in
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Section 2, or some recent developments in the determination

of optimal designs. Throughout this paper we write the op-

timality criteria as a class of convex nonincreasing func-

tionals § on the set of information matrices rather than

the class of convex nondecreasing functionals * on the set

of covariance matrices, since the former is more general than

the latter. For instance, when the covariance matrix of in-

terest is equal to Md (as in (1.13)), we have I(Md) =

*(Md) which is convex in Md if 4 is convex in Md but

not on the other hand. The strict inclusion of one class in

the other is illustrated by the fact that, if xl1(Md) ..-

k ~v(M;) are the eigenvalues of Md, then EXI (Md ) = (Md

is convex in Md but Ex (Md) is not convex in Md.

Notation used in the rest of this paper are listed below:

= the class of all vxv nonnegative definite
matrices.

qv,o the class of all vxv nonnegative definite
matrices with zero row and column sums.

A the class of designs under consideration.

=1 (Md ,  d E Pj.

Also, let Pdl-> 4d2 > "'">- Pdv be the eigenvalues of

Md. Note that if CC By,o, %av = 0, for all d c D. If

necessary, we let denote an approximate design (a proba-

bility measure on the experimental space) and Mf be the

associated information matrix.

To avoid messy expressions, the dimensions of matrices

should be deduced from the context if they are not explicitly

specified.
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2. Some well-known ootimality criteria.
Assume C_ 5B v .

I. G-optimalit .

Smith (1918) introduced a response function criterion

which can be stated as follow:

]in 2.1. A design .* E P is G-optimal if and only

if

rain max var EYx = max Vary. EYx,
AXEX

where EYx  is the b.l.u.e. of EYx and y is the experimental

space. Kiefer called it G-optimal (for global or minimix),

since we are minimizing the maximum variance of any predicted

value over the experimental space.

II. D-optimality.

Definition 3. A design d* E P is D-optimal if and

only if Md, is non-singular and win det(Mdl) = det(Mdl).

Here, "D- stands for determinant. The concept introduced

and studied by Wald (1943) and applied by Mood (1946). This

criterion has many appealing properties;

(1) under normality, if d* is D-optimal, d* minimizes:
2

(a) The volume (or expected volume, if a is unknown,

and rank (Md) is invariant under d) of the smallest in-

variant confidence region on 1 for any given con-

fidence coefficient.

(b) The generalized variance of the estimators of par-

ameters. (see remark below).
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(2) In the class of approximate designs, D-optimality

G-optimality whenever v = k,i.e., 81 = 0.

(5) The design remains D-optimal if one changes the scale

of the parameters: Let be related to

P2J''''nv by a non-singular linear transformation. If d*

is D-optimal for fl,...,Ev, then d* is also D-optimal for

The analogue for other criteria is false in even

the simplest settings.

Remar : Suppose X = (X1,X2 $,...,Xn)' is distributed as multi-

variate N(u,Y). The determinant of V is called the gener-

alized variance of X as defined by Wilks (1932).

In the theory of linear regression, under normal assump-

tion, l l= is distributed as N(_,,M-1C2 ), so

the generalized variance of ( l, 2 ,...,v) is equal to the de-

terminant of M1 2 which is the product of and det M-l

(Assume Md is non-singular).

IIi. L-optimalitv.

Definition 2.3. A design d* E 4 id linear optimal (L-opti-

malif and only if min L(M 1 ) L(M;l ) where L is a nonneg-
dE

ative linear functional on C.

One of the most useful linear criteria of optimality is

(A-optimality defined when

L(Md1 ) = Tr(Md I ).

Q at 2. A design d* E f is A-optimal if and only
if Md* is non-singular and min Tr(M~l ) = Tr(M-1 ). "A-

dcs d*

stands for average. In a statistical sense, if d* is A-opti-
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AA Amal, it minimizes the average variances of el,62,...,ev

This criterion was introduced and studied by Elfving (1952)

and Chernoff (1953).

IV. E-optimalitv.

Definition 2.5. A design d* E A is E-optimal if and only

if min -1 -1
dC[E dv Vd*v* E-optimality was first considered in

hypothesis testing (Wald (1943), Ehrenfield (1955)). "E-"

stands for eigenvalue. It has the following properties:

(1) In hypothesis testing. Under the normality assumption,

an E-optimal design maximizes the minimum power of the

associated F-test of size a on the contour flel = c for

every a and c. (See (1.14)).

(2) In point estimation? An E-optimal design minimizes the

maximum variance of the b.l.u.e.'s of the qll over

all vXl vectors ql with qiql = 1. (See (1.12)).

(3) In interval estimationi An E-optimal design minimizes

the largest semi-axis of the (hyper) ellipsoid when normality

assumptions are made on the observations.

Now it seems natural to specify some optimality functional

i on c and to pose the problem: Find d to minimize (Md).

We call § an optimality criterion. The above well-known

criteria are then:

v
D-optimality: ,D(Md) = det(Mdl) IT ul (2.1)

D ... i= 1
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L-optimality: L(Md) L(Md I ) (2.2)

-1-1
A-optimality: tA(Md) Tr(Md) vd

E-optimality: EMd) (2.4E(d I-dv . 24

(2.1), (2.3) and (2.4) are regarded as infinite if Md is

singular.
Note, in case c q the definitions of D-,A-,E-

optimality are similar, one can simply replace the index v

in (2.1), (2.2) and (2.4) by v-i.

3. S-otimalitv and (M.S)-optimalitv:

Assume " - v When Tr(Md) = 7 4di = A is a constant,v i

for all d E , the D-, A-, E-optimalities are attained when

all the Udi are equal (we call such a design a symmetric

design). Unfortunately, symmetric designs do not always

exist. Intuitively, in the absence of a symmetric design,

we may want to believe that the "closest" design to the hypo-

thetical symmetric design is a reasonable design to use. Shah

(1960) proposed the Euclidean distance between the vector of

eigenvalues of the designs as the measure of distance between

the corresponding designs. Thus, according to Shah (1960) if

there is no symmetric design in D, we should use the design

d which.minimizes the Euclidean distance between (Pd1 , ..

dv) and the vector of eigenvalues of the hypothetical symmetric

design, (A/v,...,A/v), i.e.,

Le 2 io t a31)
Wdi W d i ) /

Clearly, this -is only a heuristic approach with no statis-
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tical Justification. However, it has the merit that when

Tr(Md) is a constant, the minimization of (3.1) is equiva-

lent to that of Tr = ? d which is easier to handle.
iJa

Define :qv " [0, + col such that

2 2 2
§(Md) = TrM= E d i =, dij" (32)

Formally, we have:

Definition 3.1. Suppose Tr(Md) = A is a constant for all

d E A. A design d* £ n is called S-optimal if and only if

d* minimizes (Md) (as in 3.2) for all d E A.

Motivated by Shah's criterion, Eccleston and Hedayat

(1974) proposed a similar procedure in the case when TrMd

is not a constant.

Let C' c_ C be such that the matrices in C' have max-

imum trace.

Definiti n 3.2. A design d* E A is (M,S)-optimal if and

only if Md* E C and d* minimizes §(Md) (as in (3.2)),

for all d E p', where (' = (d£; Mdc 'i.

A geometric interpretation of (M,S)-optimality can be

given as follow. Set

SA = [(kdl''''' dv ) ; Vdi > 0, di AJ,
i d

and

(Adl '  2 = B)SAB ( .dl''*sdv); Udi > O, ' Udi A; Udi .i i

Then S is an open simplex and SAB is part of a (v-2)-di-
A A

mensional sphere with (A/v,...,A/v) as the center and the

quantity
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PH ~Uj (E Vd)/vl as the radius, whenP -"u d i - d v

B > A 2/v. The procedure of finding an (M,S)-optimal de-

sign is the same as to choose a simplex SA  as far away from

the origin as possible, and then find a design with the vec-

tor of elgenvalues on SA  which is closest to the center

of the simplex in the Euclidean sense.

In the qv'o context, same arguments hold excepp re-

placeing v by v-1.

4. p -criteria.
p
In Keifer (1974), the following family of criteria was

introduced. We shall describe it in the Rv  context.

Let 1

v 1
p(d) = !lTr(M;P)Ip

V, -p 1

Svi i , 0 < p < oo . (4.1)

Definition L. A design d* E q is p-optimal if and only

if d* minimizes 0 (Md), d E

When C c j, we may restrict ourself to d with

Md nonsingular. The following theorem will give a connection

between D-, A-, E-criterion and the P-criterion.

1 Tr(Mv

Ijegm(i) Ol(Md) Tr(1 1 ( 1 41

(ii) o(Md) nim p(Md) = V -i (4

pd.0p1 (4.2)

(iii) *oo(Md) =lim p(Md) = dv
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E.2f: (i) is clear
1

V _pi l

log 0P(MdJ log ~i: 11idil

0
As p tends to zero, the right hand side goes to 2 so by

applying L'Hospital's rule, we obtain
v

lim log 4p(Md) =nm urn lo i1-id
p-O p-O v

Vi .div ~

Ilv -1

log R

v i=l tUdi

Hence lim Ip(Md) (_ H d,) v
p-O i=l

(iii) Let i -I

Then

Flr. v 1)P
log *p(Me) = log ('i..l

1P v Op
log 1

log + log - + lo

Since pdi 1, for all i,

Id
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we conclude 0 log (v PP) log v.

1 1P

Hence lirn log di 0
P-0-I

Therefore lm log 4p(Md) = log -v

and consequently lir p( -1p-co v "

Corollar- y

(i) When p = 1, fP-criterion is equivalent to A-opti-

mality.

(ii) When p approaches to 0, the limiting case of

4p-criterion is equivalent to D-optimality.

(iii) When p approaches to w, the limiting case of

fp-criterion is equivalent to E-optimality.

Sa2r: The p-criterion in the P o  context is

S1 1,pCd)  vl _PIP
p(Md) = L1 v- il ij

5. lversal ODtimalitv.

in Keifer (1975), a strong optimality criterion was con-

sidered. Here, we restrict ourself in v,o. (Since in ev

context, it is easier.)

Dellnitl.a 5al. We say d* e A is a universally optimal de-

sign, if d* minimizes f(Md), d e o for any 4 :vO->

+ -]
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satisfying:

() is convex,

(ii) ' (bM) is nonincreasing in the (5.1)

scalar b > 0 for each M e PV,"

(iii) 4 is invariant under each permu-

tation of rows and (the samu on)

columns.

Since -Tr(M) satisfies (5.1), immediately we have

the following theorem:

g 5..g. If d* E j is universally optimal, then TrMd,

is maximum.

nflalto 5_LZ. A matrix M is called a completely symmetric

(c.s.) matrix if M = al + tJ where a,o are scalars and

I V  is the identity matrix, Jv consists of all l's.

L 5-a. If M1 and K2 are two completely symmetric

matrices in Pv,O" then there exists an h such that .= hM1 "

Rggo. : Suppose MI = I Iv + 3IJv

Ke C'2l V + 0z JV

Mh• j= 0.*I + vpi 0 for i= 1,2,

= -v + iJ v ,  ,

Let h [3 2/13 1.

Then 2 =-V(321 + P.?Jv h(-Vjll v + p1Jv) = hMI
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The following theorems are simple tools in determining

such an optimal design.

J r .5.j. Suppose C _c Rv,0  contains a Md* for which

(a) Md. is c.s. (5.2)

(b) TrMd* = max TrMd.
dCE

Then d* is universally optimal in p.

Pr2o : From Theorem 5.1 it suffices to show that §(Md*)

minimizes (Md) for all satisfies (5.1), Md c C' where

_ C consists of the matrices which have maximum trace.

For any Md c C', let rMd be obtained from Md by per-

muting rows and columns according to r, and let Md =

' Md/v, the symmetrized version of Md. By (5.1)(a) and (c)
T

we have

0(d) F- ! , r-Md ) = 0(Md), (5.3)

for any o satisfying (5.1). Of course Md need not be in

c, but Md is c.s. and in pv,O . By Lemma 5.1, Md is of

the form bMd* for some b 0. Now Tr(Md) = Tr(Md). But

Tr(Md) = Tr(Md*) by assumption. This implies b = 1 and

hence Md = Md*" By (5.3), (Md*) = (Md) for all t

satisfying (5.1) and Md c C'. Therefore Md. is universally

optimal.

5.o. Suppose an Md* satisfying (5.2) exists. Let

§:"vO - (-co, +oo] be a function satisfying (5.1). If, in

addtion, t is strickly convex (and hence also "nonincrease-
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ing" in property (ii) is replaced by "decreasing"), then

every f-optimal d' has Md, = Md* . (i.e., d' is also

universally optimal).

Eogv: Let M M Since is strictly convex, we

have

(Md) 1 (TMd) '= (5.4)
T

Again Md' is c.s. and in Pv,O this implies that
bMd* for some b . 0. Since M satisfies (5.2),

Tr(Md*) > Tr(Md,) which implies b 1. But if b < 1

%( V) > O(Md,) = t(bM d*) > t(Md*)- (5.5)

This contradicts the assumption that d' is -optimal.

P'rom (5.4) and (5.5) we can conclude that

b =1 and Md' Md' ,
i~~e., Md' = d•

And d' is indeed universally optimal.

Let tl and 02 be two convex functions satisfying

(5.1). Suppose d* is 1 -optimal, the following theorem

gives a sufficient condition for d* to be *2-optimal.

Thg. If §l e 2 on c and if tl(Md*) = §2(Md),

then d* is *2 -optimal if d* is 0-optimal. I
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P.r : Assume d* is 1-optimal, then I(Md*) < I(Md) for

all d e A.

By assumption

42 (Md*) = (l(Md*) l(Md) 0 12 (Md)
-

Hence the result.

EjnpJ 5_j. A useful family of criteria in the AvO con-

text is the rP-criteria, for 0 < p < co, with the limiting

values
._1_

(Md IT dv-I and o(M) -I
i d = Ud(vl) . Here

P < q P p(Md) q(Md) with equality if and only if all

Udi are equal. Hence from Theorem 5.4 if Md* is c.s. and

d* is p-optinmal = d* is q-optimal for all q > p.

In the absence of universal optimality, some weaker opti-

mality results which have some useful statistical implications

(for instance, include A-, E-, D-criteria and all 4p -criteria,

0 < p < ) has been discussed by Kiefer (1974).

Observe that (4.1) and (4.2) are equivalent to the follow-

ing:

(a) I*(Md) = - 0
pd i di

(b) M(Md) = -7 log tdi (5.6)
z, i

S(c) o(M d ) -
I d dv "

Let (Md ) = Z f(di)' (5.7)

where f is convex on [0, + co). We want to find conditions

under which a design d is 0 -optimal.
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LeM5 . if f is a convex function on [0, +cD), then

v-i (udi) >v-i v-i V-1 ) (5.8)

for any Md in ev O , with equality if all the Udi'S are

equal or Md is c.s.

ErQo: Let P be the (v-l)yv orthonormal matrix such that

Udl 0

P~dP' = Ad=

0 Ud(v-l)

Augment P with 1 1 and call the resulting

matrix P*.

P~d' 0 Ad  0

P*MdP* LP=j=

L0

Assume P* = (pij)' and let eii = 24

v v-I

Then r eijj= and 3leij = i- v "J--1 i~li
AlsoM = e~

Also M = P'AdP . mdjj i=l e ij di

v-i

Thus fv -l md) v-1 i=l eij di)
V -l jj V- v-

Since
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i~ -jilV- i 1 and e., > 0.

The convexity of' f'

v-i fvlvj"i v- I --
_~ v-ii-

v-i

Hence we have

f. rY e~j. vf e13 jj f'-d (5-9)

Summing on J, we obtain

v- .1 vv-1
v 'k-1 mdi) f ("i-Ji~1

If "dl ; d2 = ** d(v-1) Pd (i.e., Mi is c.s.)

V-1
Mdjj - ei1 V.,i t'd v

Then

v ~ ~ ~ ~ ~ i t~ ( l u) l ") = (v-ljf'(u)

r f(uId) = f'(Pdi) (5-10)

TLjo~m 5Z If §* is given by (5.7) with f' convex, and

i~f d* E p satisfies:
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(1) M* is c s.

v-i
(ii) d* minimizes F f --_v1  '

J=l 1 (5.11)

then d* is *-optimal.

Proof: Follows directly from (5.10).

EXamp : In the case of (5.6), we obtain,

(a) If M* is c.s. and minimizes F m; d* isci dj

*-optimal.

(b) If M is c.s. and maximizes . log m = d* is

*-optimal (i.e., it is D-optimal).

(c) If M*d is c.s. and maximizes min mdjj d* is

% -optimal (i.e., it is E-optimal).

Also, from Theorem 5.2,

(d) If M* is c.s. and maximizes r mdj j = d* is

p-optimal, 0 p oo and more.

6. Tvne 1 and Type 2 Criteria.

Cheng (1978) refined Kiefer's criteria and defined a

larger class of optimality criteria that include A-, E-,

D-, all p-criteria, 0 < p < oo, and more.

Again, let C c qv,0* (In the Rv context, similar

arguments hold.) Let t. max TrMd

Def L r.j. A design d* E P satisfies o ci



V-1
pS yP 1 if d* minimizes #f(Md) = f(di) where f

i=1

is a real-valued function defined on [O,t ) such that

a) f is continuous, strictly convex, and strictly de-

creasing on [O,t 1. We include here the possibili-

ty that f(O) = lim f(x) = +00. (6.1)

b) f is continuously differentiable on (O,t ), and

f' is strictly concave on (O,t), i.e., f' < 0,

f" > 0, and f" < 0 on (O,t).

Defin~ition 6.2. A design d* E m satisfies optimality criteria

of tp 2, if d* minimizes 4f(Md) = v l f(udi) where f has

the same property as in Definition 6.1. Except that the strict

concavity of f' is replaced by strict convexity, i.e., f.. > 0

on (O,t).

Also, a generalized optimality criterion of tye i (i

.2) is defined to be the pointwise limit of a sequence of

type i criteria.

From (4.2) and (5.6), the A-, D-, and P-criterion are

of typ 1 and the E-criterion is a generalized criterion of

type 1 (being the limit of #p-criteria, as p. co). Note

p
that the A- and D-criteria correspond to the choices of

f(x) = x and -log x respectively.

1jemarkr: (i) There do exist functions satisfying the re-

quirements for a type 2 criterion. For example, let f(x) =

Ex3-ax over the interval [O,t ] of interest, when E > 0,

a > 0 and E compared with a, is small.

71S . A
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(ii) From Section I if there is a symmetric design

which maximizes TrMd over P, then it is optimal

with respect to a very general class of criteria including

both generalized type 1 and type 2 criteria.

It appears that most optimality criteria (universal

optimality is an exception) which place equal emphasis on

all the parameters can be formulated in terms of the eigen-

values of the information matrix. In Section 7 we shall

introduce another optimality criterion of the form (Udl,..

Ud(vl)) with Schur convex or convex symmetric.

7. Schur optimality.

The concept of Schur optimality was introduced by Magda

(1979). To see how it was defined, let us recall the following:

Definition 7.1. A matrix with nonnegative entries is called

doubly stochastic if the sum of the entries is 1 in every row

and every column.

Definition 7.. Let I be an interval on the real line. A

function ,:I - R is called Schur convex (after Schur (1923))

if

t (Sx) < (x)

for all XE I n and every doubly stochastic matrix S. A

Schur convex function is not necessarily convex, e.g.,

4(XlX 2) = IXl- X 21. Any Schur convex funcion is symmetric,

because for any permutaion matrix P we have

1 _______



§(Px) I (x) = (P-1Px) < +(PX).-

Hence t(Px) = (x) as desired. We have used the fact

that a permutation matrix and its inverse are examples of

dpubly stochastic matrices.

While symmetry is a necessary condition to have Schur

convexity it is by no means sufficient. When convexity is

added to syuetry we can insure Schur convexity. This is seen

as follow: By Birkhoff (1946) every doubly stochastic matrix

S can be written as a convex sum of permutaion matrices. Let

S = rxPi, (Xki = 1). Then

'convexity of (_) symmetry of O(x)

(Sx) = (TXiPix) E zXi(Pix) = .XiP(x)

= (x) and this proves Schur convexity.

Assume C c RvO' let I = [O,t ] and n be the small-

est integer for which Pd(n+l) = Vd(n+2) ... 'dv = 0 for all

d E %.

Define a(Md) to be the following vector in In:

/ 'd 1
(T(Md) = . (7.1)

tUdn

For d e p and any Schur convex function defined on n

and nonincreasing in its arguments, set

§(Md) = t(C(Md)). (7.2)
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Schur optimality is now defined as follows:

D ni 7_5. A design d* E p is called Schur-optimal

if d* minimizes 6(Md), for all d E 0, and all Schur con-

vex functions nonincreasing in their arguments.

Note that, if 1:I R is convex, then

n
(x) = 4(xi), x = (XlX2,...,Xn) (7.3)

is Schur convex on In because §(.) is symmetric and convex.

From (5.6) D-, A-, ond all P-criteria defined so far on the

eigenvalues of the information matrices are instances of Schur

functions. As a symmetric and convex function on I n

E(xil,...,xn) = -min (xx 2 ,. o .,xJ

is also Schur convex. This function is associated with E-op-

timality. Note that E-optimality is no longer a limiting case

when delt with as a Schur convex function. To prove Schur opti-

mality, we state the .following very useful tool.

Theorem Y.:-. (derived from Ostrowski (1952)).

Let F(xl,...,xn) be a Schur convex and nonincreasing

function in its arguments on 1n. Let

Yl > Y2"' " "- Yn; Xl >- x2 >... x n  (7.4)

satisfy the following

Yl +'"0 "+ Yt x 1 +...+ x, for all 1 I L n. (7.5)

Then

i 11
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F(yF1 i Yn) - F(x I , ... xn)

For convenience, when two vectors x and y e I

Satisfy (7.4) and (7.5) we write y _ x.

Applying the above result we can immediately conclude:

Theorem 7_0. d* is Schur optimal if a(M) < a(Md) for

all d E

It should be pointed out that the ordered partial sums

in (7.4) are examples of Schur convex functions. Further

useful results can be obtained in Hardy and Littlewood (1967).

V L2. Let Md e C.c v,O and Pi(l _ i _ n) be n

orthogonal matrices such that M(i) PlM P. also satisfies
d i d iM( ni

i)-0 for all I_ i <n. Set MM i= M . Then

for any Schur convex function @ nonincreasing in its argu-

ments we have (Md ) < t(Md).

g2Qf: Since the P Is are orthogonal, we have G(M(i)) -

5(Md) and hence I(M(i)) = §(Md) for all 1 _ i n. More-

over, let (Pdi j  and [ dij denote the eigenvalues of Md

and Md respectively (and let them be ordered nonincreasing-

ly.) Then it is known (see Bellman (1970)) that

7 di ' v di for = 1,2,...,v-1.
i=l i=l

By Theorem 7.1 we obtain (Md) O(Md)"

2f : We call Md (defined in Lemma 7.2), an Axerast
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yerslon of Md.

Verifying the requirements of Theorem 7.3 is difficult

because of the large variety of information matrices Md .

It is practically impossible to find O(Md). When averaging

Md properly, however, it is easily seen that finding

n(Md) is a tractable task. Hence comparing I(Md*) and

O(Md) (in view of Theorem 7.4) is often time possible.

Jieoxem ZIA. d* is Schur optimal if G(Md*) < (Md ) for

all d E e, where Md is some average version of Md-

Pro. (Md.) (Md) where the first inequality holds

from the assumption a(Md.) _ c(Md) and the latter from

Lemma 7.2.

Closing remarks: We refer the reader to "Special Issue on

Optimal Design Theory" No. 14, Vol. A7 (1978) of Communications

in Statists (edited by this author) for further ideas, results

and references. Currently we are preparing a book on the

subject of optimal design of experiments. The book should

be available for distribution within a year or so. Meanwhile,

the interested reader can obtain preliminary versions of some

chapters of the book.
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